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Abstract – We propose a general Bayesian approach to heteroskedastic error modeling for gen-
eralized linear mixed models (GLMM) in which linked functions of conditional means and
residual variances are specified as separate linear combinations of fixed and random effects.
We focus on the linear mixed model (LMM) analysis of birth weight (BW) and the cumulative
probit mixed model (CPMM) analysis of calving ease (CE). The deviance information criterion
(DIC) was demonstrated to be useful in correctly choosing between homoskedastic and het-
eroskedastic error GLMM for both traits when data was generated according to a mixed model
specification for both location parameters and residual variances. Heteroskedastic error LMM
and CPMM were fitted, respectively, to BW and CE data on 8847 Italian Piemontese first par-
ity dams in which residual variances were modeled as functions of fixed calf sex and random
herd effects. The posterior mean residual variance for male calves was over 40% greater than
that for female calves for both traits. Also, the posterior means of the standard deviation of the
herd-specific variance ratios (relative to a unitary baseline) were estimated to be 0.60± 0.09 for
BW and 0.74 ± 0.14 for CE. For both traits, the heteroskedastic error LMM and CPMM were
chosen over their homoskedastic error counterparts based on DIC values.

Bayesian analysis / genetic evaluation / heterogeneous variances / threshold model

1. INTRODUCTION

Most genetic evaluation programs for livestock are based on generalized
linear mixed model (GLMM) analyses [39] with breeding values or genetic
effects modeled as random with a covariance structure based on known ge-
netic relationships in a pedigree. Often heterogeneous residual variances, also
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defined as residual heteroskedasticity, are observed across various environmen-
tal subclasses. If heteroskedasticity is not properly modeled, biased breeding
value predictions may result such that a disproportionate numbers of animals
are selected from highly variable environmental subclasses with consequent
adverse effects on genetic improvement [16].

Genetic evaluation systems based on linear mixed models (LMM) have been
proposed for the analysis of continuous production characters in which resid-
ual variances are modeled as a function of both fixed, e.g. region and sex, and
random, e.g. herd, effects [9,17,27,29,31]. It is well recognized that using ran-
dom effects or, equivalently, empirical Bayes specifications for a factor with
many small subclasses facilitates the efficient borrowing of information from
all subclasses for inference on any one particular subclass [13, 30]. There has
been increasing interest to model residual heteroskedasticity in GLMM other
than the LMM. For example, the cumulative probit mixed model (CPMM),
often labeled as the threshold model in animal breeding [12], was developed
to provide genetic evaluations on ordinal categorical traits, such as calving
ease (CE) as the LMM is only suitable for the analysis of nearly normally
distributed characters. The CPMM was extended by Foulley and Gianola [10]
to model the logarithm of residual variances as a linear function of fixed ef-
fects on the underlying latent scale that characterizes this model. This het-
eroskedastic CPMM now forms the basis for CE genetic evaluations in French
Montbéliarde, Normande, Holstein [7] and Italian Holstein [3] cattle by which
residual variances are modeled, for example, as a function of calf sex and age
of dam. San Cristobal-Gaudy et al. [32] further extended the CPMM of Foul-
ley and Gianola [10] to specify log residual variances as a function of both
fixed and random effects, including correlated genetic effects.

With the exception of Sorensen and Waagepetersen [37], virtually all of
the heteroskedastic error GLMM analyses procedures presented thus far have
involved either rather tenuous large sample approximations or complicated
numerical integrations as necessary to derive marginal likelihood functions.
Furthermore, we perceive the lack of a unifying framework for the struc-
tural modeling of heterogeneous variances in GLMM analysis, whether for
LMM, CPMM, or other models such as those for censored data [36] or count
data [40]. The objectives of our study then were (1) to develop and validate a
fully Bayesian structural mixed effects multiplicative model for residual vari-
ances in a GLMM, concentrating on a LMM analysis of normally distributed
data and a CPMM analysis of ordinal data and (2) to apply the model to a
dataset of BW and CE observed on calvings from first parity Italian Piemontese
dams.
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2. MODEL CONSTRUCTION

For a number of GLMM, data augmentation schemes exist such that a n × 1
vector of either observed or augmented variables L = {Li}ni=1 conceptually
maps one-to-one to the data vector Y = {Yi}ni=1. Examples where such aug-
mented variables have been particularly useful for Bayesian inference include
the CPMM [35] and censored data models [36].

We write a linear mixed effects model as

L = Xβ + Zu + e (1)

where β is a vector of fixed location effects, u is a vector of random location
effects, X and Z are known design matrices and e ∼ N(0, R(ξ)) is a vector of
normally distributed residuals with variance covariance matrix R(ξ) having a
certain heteroskedasticity specification based on unknown ξ as defined later.
The linear model in (1) is equivalent to the following distributional specifica-
tion:

L | β, u, ξ ∼ p(L | β, u, ξ) = N(Xβ + Zu,R(ξ)). (2)

For a LMM of normally distributed data, there is no distinction between Y
and L, i.e. Y ≡ L, such that p(Y | β, u, ξ) ≡ p(L | β, u, ξ). However, for ordinal
data with say, C = 4 categories, L maps to Y as follows:

Yi =





1 if τ0 < Li ≤ τ1,

2 if τ1 < Li ≤ τ2,

3 if τ2 < Li ≤ τ3, and

4 if τ3 < Li ≤ τ4; i = 1 . . . n,

(3)

where τ0 = −∞ < τ1 < τ2 < τ3 < τ4 = ∞ are threshold parameters that define
bin boundaries for Y based on L.

We further partition e into residual variance subclasses e′ = [e′11 e′12 · · · e′st]
where ekl ∼ N(0,Rkl(ξ) = Inklσ

2
ekl

) pertains to the nkl × 1 subvector of resid-
uals identified with the kth level (k = 1, 2, . . . , s) of a single fixed factor, e.g.
sex, and the lth level (l = 1, 2, . . . , t) of a single random factor, e.g. herd, that
jointly influence the residual variance σ2

ekl
for the klth group. For simplicity of

presentation, we concentrate on a specification based on only one fixed factor
and one random factor for residual heteroskedasticity; implementation details
involving multiple fixed and random factors are forthcoming in future work.
We partition the data realization y of Y as y = [y′11 y′12 · · · y′st]

′ and the corre-
sponding augmented variables L = [L′11 L′12 · · · L′st]

′ as with e. We propose a
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multiplicative structural effects model as follows:

σ2
ekl
= σ2

eγkνl; k = 1, 2, . . . , s; l = 1, 2, . . . , t; (4)

where σ2
e is a “fixed” reference residual variance, γk > 0 is a multiplicative

scaling factor identified with the kth level of the fixed effect subclass and νl > 0
is a random multiplicative scaling factor unique to the lth level of the random
effect. When noninformative priors are used for σ2

e and γ, identifiability con-
straints are required. In that case, we arbitrarily set γs = 1 such that σ2

e then
specifies the expected residual variance for the last fixed effects subclass k = s
given E(νl) = 1. If one writes equation (4) on the logarithmic scale, this con-
straint (log(γs) = 0) is analogous to the corner parameterization used for lo-
cation parameters [5] and is the default parameterization using, for example,
SAS© linear model software [21].

Note then that fixed and random effects specifications are specified for both
location parameters, i.e. β and u, and for dispersion parameters, i.e. σ2

e , γ =
[γ1 γ2 . . . γs]′ and v = [ν1 ν2 . . . νt]′. Different classes of effects could be
specified for the two sets of parameters. For example, for fixed effects, there
may be calf sex differences specified for means, i.e. location parameters, but
not for residual variances whereas for random effects there may be variability
in contemporary groups specified for residual variances but not for location
parameters.

We specify a subjective prior density on β:

β ∼ p (β) (5)

where p(β) is typically specified to be a bounded flat uniform prior or an infor-
mative, perhaps conjugate normal, prior. Here β could be parameterized in a
number of different ways, e.g. to partition factor level effects and interactions
thereof from a reference mean, say µ, analogous to the partitioning of σ2

e from
γ for residual variance modeling. For elements of β, as with γ, identifiability
constraints should be specified if non-informative priors are used [5, 21].

As typical for any GLMM, u is specified by a structural multivariate prior:

u |ϕ ∼ p (u |ϕ) = N(0,G (ϕ)). (6)

Here G(ϕ) is a variance-covariance matrix that is a function of several un-
known variance components or variance-covariance matrices in ϕ, depending
on whether or not there are multiple sets of random effects and/or specified
covariances between these sets; an example of the latter is the covariance be-
tween additive and maternal genetic effects. Furthermore, flat priors, inverted
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Gamma densities, inverted Wishart densities or products of conditionally in-
dependent components thereof may be specified for the prior density on ϕ,
i.e.

ϕ ∼ p(ϕ) (7)

depending, again, on the number of sets of random effects and whether there
are any covariances thereof [34].

Analogously to β, a flat (bounded) prior density may be specified separately
for σ2

e and for each γk; alternatively, proper conjugate inverted-gamma or other
subjective priors may be specified, i.e.

σ2
e ∼ p(σ2

e) (8a)

and

γk ∼ p(γk), k = 1, 2, . . . , s. (8b)

Conversely, a structural prior is used to model the random residual dispersion
effects, νl, l = 1, 2, . . . , t, analogous to that used for the random location ef-
fects u in equation (6). We conveniently choose this structural prior to be an
inverted-gamma density with parameters αν and αν − 1:

p(νl | αν) = (αν − 1)αν

Γ(αν)
(νl)
−(αν+1)exp

(

− (αν − 1)
νl

)

; l = 1, 2, . . . , t; αν > 2.

(9)
Here E(νl) = 1 and σ2

ν = Var(νl) = 1
αν−2 , l = 1, 2, . . . , t. Note that as αν → ∞

then σ2
ν → 0 such that the influence of v on residual heteroskedasticity dimin-

ishes. The structural prior in (9) facilitates a borrowing of information across
the t random effects of v, similar to what occurs for classical random effects
modeling of location parameters using u [30]. Since E(νl) = 1, νl can be inter-
preted as a relative measure of variance for random subclass l. Generally, αν
is unknown such that a subjective prior may be placed on it. One vaguely in-
formative proper prior commonly used for strictly positive parameters [1] and
used in some of our previous applications [20, 41] is specified by

αν ∼ p(αν) ∝ 1

(1 + αν)2
· (10)

The remaining hierarchical specifications in this heteroskedastic GLMM de-
pend upon the first (data sampling) stage of the n × 1 data vector y. For a LMM
analysis of normal error data, equation (1) suffices, i.e. Y ≡L, such that no aug-
mented variables are required. However, for a CPMM analysis of ordinal data
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with C ordinal categories, numbered j = 1, 2, . . . ,C, we specify the first stage
of our hierarchical model using Sorensen et al. [35]:

p(y | L, τ) =
s∏

k=1

t∏

l=1

nkl∏

i=1





C∑

j=1

1(τ j−1 < Likl < τ j)1(yikl = j)




, (11a)

where Likl and yikl are the ith elements of Lkl and ykl, respectively. As before,
τ = [τ0 τ1 · · · τC]′ denotes a vector of unknown threshold parameters that
delimit the augmented variables L into their respective observed data bins y
with 1(.) denoting the indicator function having value 1 if the condition within
the function is true and 0 otherwise.

The second stage of the model was given previously in equation (2) and can
be re-expressed as a product of conditionally independent normals:

L | β, u, ξ ∼
s∏

k=1

t∏

l=1

nkl∏

i=1

p(Likl | β, u, σ2
e , γk, νl) (11b)

with ξ = [σ2
e γ
′ v′]′ and p(Likl | β, u, σ2

e, γk, νl) = N(x′iklβ + z′iklu, σ
2
eγkνl).

Here, x′ikl and z′ikl are known incidence row vectors from X and Z, respectively,
corresponding to animal i, i = 1, 2, . . . , nkl, within the klth residual variance
subclass, k = 1, 2, . . . , s; l = 1, 2, . . . , t.

Recall that τ0 = −∞ and τC = +∞; furthermore, τ1 is fixed to an arbitrary
constant in order to satisfy identifiability constraints. We adapt the alterna-
tive parameterization presented by Sorensen et al. [35] in which the residual
variance is explicitly modeled rather than being constrained, e.g. σ2

e = 1, the
latter being the more common parameterization used in homoskedastic error
CPMM [12]. This specification thereby requires one additional constraint on τ,
say on τ2 > τ1, such that C − 3 parameters in τ are uniquely identifiable.
A prior distribution on the remaining elements of τ may be specified provided
that the order constraints on elements of τ are satisfied [35], i.e.

τ = [τ3 τ4 · · · τC−1]′ ∼ p(τ); τ3 < · · · < τC−1. (12)

The joint posterior density of β, u, γ, v, ϕ, αν and any other parameters
necessary for the GLMM in question, i.e. L and τ in the CPMM, is simply
specified as the product of the various stages of the hierarchical model. That
is, for the LMM where Y ≡ L, the joint posterior density of all unknowns
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specified to proportionality is

p(β, u, σ2
e , γ, v,ϕ, αν | y)

∝ p(y | β, u, σ2
e, γ, v)p(β)p(u | ϕ)p(ϕ) (13)

p(σ2
e)




s∏

k=1

p(γk)







t∏

l=1

p(νl | αν)



p(αν)

whereas for the CPMM, the joint posterior density is

p(L, τ, β, u, σ2
e, γ, v,ϕ, αν | y)

∝ p(y | L, τ) p(L | β, u, σ2
e , γ, v)

p(τ)p(β)p(u | ϕ)p(ϕ)p(σ2
e)




s∏

k=1

p(γk)







t∏

l=1

p(νl | αν)



p(αν). (14)

A Markov chain Monte Carlo (MCMC) inference strategy requires determi-
nation of and sampling from the full conditional distributions (FCD) of each
parameter or blocks thereof. The joint FCD for β and u, regardless of whether
inference is based on the LMM or the CPMM, can be readily shown to be
multivariate normal

β, u |ϕ, σ2
e , γ, v, αν, y,L

∼ N






β̂

û



,




X′(R(ξ))−1X X′(R(ξ))−1Z

Z′(R(ξ))−1X Z′(R(ξ))−1Z + (G(ϕ))−1




−1


(15)

where

[
β̂

û

]

=

[
X′(R(ξ))−1X X′(R(ξ))−1Z
Z′(R(ξ))−1X Z′(R(ξ))−1Z + (G(ϕ))−1

]−1 [
X′ R−1 L
Z′ R−1 L

]

are the

typical mixed model solutions to β and u based on current MCMC
samples of other unknown parameters/variables. Furthermore, (R(ξ))−1 =
k=s,l=t⊕
k=1,l=1

(R(ξ)kl)
−1 where

k=s,l=t⊕
k=1,l=1

represents the direct sum operator [33] across

all st groups. Univariate MCMC sampling strategies, as an alternative to a joint
block sample from (15), are elucidated in Wang et al. [43].

As in Kizilkaya et al. [20], we use an efficient Metropolis Hastings
update [6] to sample from the joint FCD of L and τ under the CPMM. If some
partitions of ϕ form a variance-covariance matrix, then their respective FCD
can be readily shown to be inverted-Wishart whereas if other partitions of ϕ
involve scalar variance but no covariance components, then the FCD of each
component can be shown to be inverted-gamma [34].
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We subsequently determine the FCD for σ2
e which is virtually identical for

both the CPMM and the LMM. Under the CPMM,

p
(

σ2
e | β, u, γ, v,ϕ, τ, αν,L, y

)

∝



s∏

k=1

t∏

l=1

(

σ2
eγkνl

)− nkl
2




× exp



−1

2

s∑

k=1

t∑

l=1

(
Lkl − Xklβ − Zklu

)′ (Lkl − Xklβ − Zklu
)

σ2
eγkνl




p
(

σ2
e

)

∝
((

σ2
e

)− n++
2
)

exp




−

s∑

k=1

t∑

l=1

e′klekl

2γkνl

σ2
e




p
(

σ2
e

)

(16)

where Xkl and Zkl are appropriate partitions of X and Z that relate ykl and Lkl to
β and u, respectively. With a flat, preferably bounded, uniform prior specified
in (8a), i.e. p(σ2

e) ∝ 1, the FCD for σ2
e from (16) can then be seen to be simply

inverted gamma with parameters α++ =
n++

2 − 1 and β++ = 1
2

s∑

k=1

t∑

l=1

ekl
′ekl

γkνl
,

where n++ =
s∑

k=1

t∑

l=1

nkl. Alternatively, if one specifies (8a) to be any proper

inverted gamma density, then the FCD of σ2
e will also be inverted-gamma.

It can also be readily determined that the FCD of γk is inverted gamma with

parameters αk+ =

t∑

l=1

nkl

2 −1 and βk+ =
1

2σ2
e

t∑

l=1

e′klekl

νl
, k = 1, 2, . . . , s−1 based

on a flat uniform prior specification for (8b), whereas the FCD of νl is inverted

gamma with parameters α+l =

s∑

k=1

nkl

2 +αν and β+l =
1

2σ2
e

s∑

k=1

e′klekl

γk
+αν−1 for

l = 1, 2, . . . , t. Note that MCMC sampling of elements of ξ under the LMM is
identical to that for the CPMM except that ekl = ykl − Xklβ − Zklu rather than
ekl = Lkl − Xklβ − Zklu.
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The FCD for αν based on the prior p(αν) adopted from equation (10), is not
readily recognizable:

p(αν | β, u,ϕ, γ, v, y,L, τ)

∝ (αν − 1)ανt

(Γ (αν))t exp



− (αν − 1)

t∑

l=1

ν−1
l




t∏

l=1

(νl)
−(αν+1) p (αν) . (17)

Here we sample from (17) indirectly using the change of variable ψν = log(αν)
with a random walk Metropolis-Hastings update based on a Gaussian proposal
density [4] in a manner virtually identical to how we sampled the degrees of
freedom parameter for a cumulative t-link mixed model (CTMM) in our pre-
vious work [20].

3. MODEL COMPARISON

The deviance information criterion (DIC) has been proposed for comparing
goodness of fit for alternative constructions of hierarchical models to data [38].
The DIC is based on the posterior distribution of the deviance statistic or
−2 times the sampling distribution of the data as specified in the first stage
of a hierarchical model. For the LMM, the data sampling stage is specified as:

p
(

y | β, u, σ2
e, γ, v

)

=

s∏

k=1

t∏

l=1

(2π)−
nkl
2 (σ2

eγkνl)
− nkl

2 exp

(

− [ykl − Xklβ − Zklu]′[ykl − Xklβ − Zklu]

2σ2
eγkνl

)

(18)

whereas for the CPMM, the data sampling stage is based on the marginal like-
lihood of the data [20] based on the integration of the product of (11a) and
(11b) jointly across all n observations with respect to L:

p
(

y | β, u, σ2
e , γ, v

)

=

s∏

k=1

t∏

l=1

nkl∏

i=1

Prob
(

Yikl = yikl | β, u, τ, σ2
e , γk, νl

)

=

s∏

k=1

t∏

l=1

nkl∏

i=1



Φ




τyikl −
(

x′iklβ + z′iklu
)

√

σ2
eγkνl



− Φ




τyikl −
(

x′iklβ + z′iklu
)

√

σ2
eγkνl






· (19)

Smaller DIC values are indicative of better data fit. Further details on DIC
including its components and computations for LMM and CPMM can be found
in Kizilkaya et al. [20].
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4. DATA

4.1. Simulation study

A simulation study was carried out to validate Bayesian inference on the
proposed heteroskedastic error LMM and CPMM and to assess the ability of
the DIC to correctly choose between homoskedastic and heteroskedastic error
GLMM. A simple mixed effects model was used to generate latent variables L
for 50 progeny from each of 50 unrelated sires:

Li jkl = µ + sexi + herd j + sirek + ei jkl.

Here µ = 0.5, {sexi}2
i=1 (sex1 = −0.5 and sex2 = 0.5) represents a 2× 1 vector

of fixed sex effects. Furthermore, {herd j}100
j=1 ∼ N(0, I σ2

h) is a 100 × 1 vector

of independent random location effects, and {sirek}50
k=1 ∼ N(0, Iσ2

s) represent
a 50 × 1 vector of independent random location effects with σ2

h = 0.25 and
σ2

s = 0.10. Hence, Li jkl and ei jkl are, respectively, the latent and residual vari-
ables generated for calf l of sex i with sire k and raised within herd j. Now,
ei j = {ei jkl} ∼ N(0, Ini jσ

2
eγiν j) is the vector of residuals associated with the ni j

records from sex i and herd j where ν j ∼ Inverted-Gamma(αν, αν − 1), j =
1, 2, . . . , 100. Three replicated datasets from each of four different populations
or different values of αν were generated. Three of the populations had residual
heteroskedasticity specifications that differed with respect to degree of herd
variability: Population I: αν = 3, Population II: αν = 12, and Population III:
αν = 50. That is, the values αν = 3, 12 and 50 represented extreme, moderate
and mild levels, respectively, of residual heteroskedasticity across herds, given

that the standard deviations σν =
√

1
αν−2 of the relative variance factors are

then 1,
√

1
10 , and

√
1
48 , respectively. Each population was based on σ2

e = 1.25
and γ1 = 0.80, with constraint γ2 = 1 meaning that Sex 1 (say females) had
a marginal residual variance of σ2

e f emale
= σ2

eγ1 = 1.00 whereas males (Sex 2)

had a marginal residual variance of σ2
emale
= σ2

eγ2 = 1.25. Our MCMC im-
plementation was slightly reparameterized from that presented previously in
that σ2

emale
and σ2

e f emale
were sampled directly. The three replicates from Pop-

ulation IV were generated with homoskedastic error (αν = ∞) with σ2
e = 1

and γ1 = γ2 = 1.
Levels of fixed and random effects for both location and residual variance

parameters were randomly assigned to individuals in generating data. Aug-
mented data L was mapped to ordinal data y based on C = 4 categories with
thresholds τ1 = −0.50, τ2 = 1.00 and τ3 = 2.00 in all populations. Here L and
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its ordinal mapping to y were analyzed using the appropriate GLMM (LMM
and CPMM, respectively) based on both homoskedastic and heteroskedastic
error models with flat priors placed on β, σ2

emale
, σ2

e f emale
, σ2

s , σ2
h, and the

prior from equation (10), used for αν. We invoked the constraints τ1 = −0.50
and τ2 = 1.00 to facilitate parameter identifiability in the CPMM analysis of
ordinal y. Although these constraints were identical to the true values of τ1

and τ2, so as to avoid rescaling of estimates of other parameters for compari-
son to their true values, any values of τ1 and τ2 could have been used provided
τ2 > τ1. For each replicated data set within each population, a burn-in period
of 10 000 MCMC cycles was discarded before saving samples from each of an
additional 100 000 MCMC cycles. DIC values were computed for each model
on each replicated dataset to validate those measures as appropriate for model
choice. Posterior densities on σ2

e f emale
, σ2

emale
, and αν were summarized by their

95% equal-tailed posterior probability intervals (95% PPI), i.e. the 2.5th and
97.5th percentiles of the posterior densities.

4.2. Italian Piemontese birth weight and calving ease data

The very same first parity calf BW and CE scores analyzed by
Kizilkaya et al. [20] are also considered here. These data were recorded on
Italian Piemontese cattle from January, 1989 to July, 1998 by Associazione
Nazionale Allevatori Bovini di Razza Piemontese (ANABORAPI), Strada
Trinità 32a, 12061 Carrù, Italy. Only herds that were represented by at least
100 records were considered in the study, leaving a total of 8847 records. CE
was scored into five categories by breeders and subsequently recorded by tech-
nicians who visited the breeders monthly. The five ordered categories were:
(1) unassisted delivery, (2) assisted easy calving, (3) assisted difficult calving,
(4) Caesarean section, and (5) foetotomy. As the incidence of foetotomy was
less than 0.5%, the last two ordinal categories were combined, leaving a total
of four mutually exclusive categories. The effects of dam age, sex of the calf,
and their interaction were modeled by combining eight different age groups
with sex of calf for a total of 16 nominal subclasses. Herd-year-season (HYS)
subclasses were created from combinations of herd, year, and two different
seasons (from November to April and from May to October). Further details
on the data, including factor definitions and number of levels thereof, are pro-
vided in Kizilkaya et al. [20].

As in Kizilkaya et al. [19,20], the LMM and CPMM used for the analyses of
BW and CE included the fixed effects of age of dam classifications, sex of calf
and their interaction in β, whereas the random effects u included independent
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herd-year-season effects in h, random sire effects in s and random maternal
grandsire effects in m. We also assume:

(
s
m

)

∼ N

( [
0
0

]

, G = G0 ⊗ A
)

and

h ∼ N
(

0, Iσ2
h

)

where G0 =

(
σ2

s σsm

σsm σ2
m

)

, with σ2
s denoting the sire variance, σ2

m denoting

the maternal grandsire variance, σsm denoting the sire-maternal grandsire co-
variance, and σ2

h denoting the HYS variance. Furthermore, ⊗ denotes the
Kronecker product [33], and A is the numerator additive relationship matrix
between sires due to identified male ancestors [14].

Residual heteroskedasticity was modeled as a function of fixed sex effects
and random herd effects. For fixed effects, γmale = 1 was considered as a con-
straint such that σ2

e f emale
= σ2

eγ f emale is the marginal residual variance for female

calves and σ2
emale
= σ2

e is the marginal residual variance for male calves as spec-
ified in the simulation study. Random effects of 66 herds for residual variabil-
ity were specified by ν j ∼ Inverted-Gamma(αν, αν − 1), j = 1, 2, . . . , 66. Flat
(bounded) uniform priors were placed on β, σ2

s , σ2
m, σsm, σ2

h, σ2
emale

, σ2
e f emale

,
and the noninformative prior from equation (10) was used for αν.

MCMC inference was based on the running of three independent chains for
each model using the same specifications as in Kizilkaya et al. [20]. That is,
for each chain, a total of 20 000 burn-in MCMC cycles was followed by the
saving of samples from each of 100 000 additional MCMC cycles.

Key genetic parameters were calf sex specific, including direct heritabili-
ties, i.e. h2

d_ f emale
and h2

d_male
, maternal heritabilities, i.e. h2

m_ f emale
and h2

m_male
, as

based on the same expressions used by Kizilkaya et al. [19, 20] except that
σ2

emale
or σ2

e f emale
was substituted for σ2

e in the denominator for males and fe-

male calves, respectively. Posterior densities of these parameters, σν = 1√
αν−2

,
all variance components, the direct-maternal genetic correlation (rdm) and key
differences such as h2

d_ f emale
− h2

d_male
, h2

m_ f emale
− h2

m_male
, and σ2

emale
−σ2

e f emale
were

summarized by posterior means and standard deviations well as by 95% PPI.
For computational expediency, 95% PPI on the herd specific relative variance
measures ν j, j = 1, 2, . . . , 66, were approximated by their posterior means ±
two posterior standard deviations. Analyses of both BW and CE were also car-
ried out by the appropriate homoskedastic GLMM in order to facilitate DIC
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comparisons against their heteroskedastic counterparts for model fit. Further-
more, Spearman rank correlations were computed between the heteroskedastic
and homoskedastic GLMM for posterior means of s for both LMM and CPMM
analyses of BW and CE, respectively.

5. RESULTS

5.1. Simulation study

Posterior inference on σ2
s and σ2

h is not reported in detail but summarized as
follows. Posterior means of σ2

s and σ2
h were generally slightly biased upwards

for the LMM analysis on L and for the CPMM analysis on y. Nevertheless, the
95% PPI of these two variance components, whether for the LMM analysis
of L or the CPMM analysis of y, included the true values of parameters in all
cases. The 95% PPI for these two components were also understandably wider
for the CPMM analysis of y than for the LMM analysis of L, likely due to the
substantial loss in data information in mapping from continuous L to ordinally
discrete y.

The 95% PPI on σ2
emale

, σ2
e f emale

and αν for each of the three replicated
datasets from each of the four populations, are provided in Table I for the
direct LMM analysis of L and Table II for CPMM for the corresponding or-
dinally mapped values of y. The 95% PPI of σ2

e f emale
and σ2

emale
in either the

LMM and CPMM analyses of L and y, respectively, always included the true
values of σ2

e f emale
= 1 and σ2

emale
= 1.25, respectively, for each of the three

replicated datasets from each of Populations I, II, and III. For Population IV,
in which three replicates were generated with homoskedastic error, posterior
means and 95% PPI for σ2

e f emale
and σ2

emale
were found to be similar to each other

and concentrated around the true value σ2
e f emale

= σ2
emale
=1 as anticipated. For

all populations, the 95% PPI of σ2
e f emale

and σ2
emale

tended to center about their
corresponding posterior means (results not shown). The 95% PPI for αν for
each of the three datasets from each of Populations I, II, and III also included
the corresponding true parameter value. The widths of the 95% PPI of αν in-
creased appreciably as αν increased. Again, because of the lower information
content of ordinal data relative to underlying latent data, CPMM analyses of y
produced understandably wider 95% PPI on αν relative to LMM analyses of
L. Furthermore, posterior means of αν were biased upwards for both analyses
in Population III (results not shown), thereby reflecting the greater skewness
of the posterior densities for higher values of αν. As anticipated, the 95% PPI
of αν in Population IV (αν = ∞) included very large values (>300) for either
the LMM or CPMM analyses.
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Table I. The 95% equal-tailed posterior probability intervals [2.5th percentile; 97.5th percentile] on residual dispersion parameters for
four simulated populations with different levels of residual heteroskedasticity.

LMM analysisa CPMM analysisa

Population- σ2
e f emale

σ2
emale

αν σ2
e f emale

σ2
emale

αν

Datasetsb

I-1 [0.76; 1.05] [0.93; 1.29] [2.53; 4.33] [0.78; 1.14] [0.95; 1.41] [2.59; 5.08]

I-2 [0.87; 1.20] [1.07; 1.47] [2.53; 4.24] [0.85; 1.24] [0.92; 1.36] [2.55; 4.84]

I-3 [0.78; 1.08] [1.01; 1.39] [2.59; 4.37] [0.74; 1.11] [0.70; 1.27] [3.02; 6.53]

II-1 [0.95; 1.18] [1.13; 1.41] [5.65; 12.93] [0.71; 0.99] [0.88; 1.32] [4.61; 13.47]

II-2 [0.84; 1.05] [1.11; 1.38] [5.94; 14.11] [0.83; 1.24] [1.13; 2.11] [5.65; 21.28]

II-3 [0.92; 1.13] [1.22; 1.49] [8.43; 26.67] [0.88; 1.24] [1.05; 1.65] [8.90; 182.6]

III-1 [0.88; 1.04] [1.16; 1.38] [21.2; 723.7] [0.87; 1.12] [1.15; 1.53] [13.9; 2459]

III-2 [0.99; 1.18] [1.32; 1.11] [19.0; 439.3] [0.91; 1.20] [1.07; 1.44] [10.2; 534.8]

III-3 [0.93; 1.12] [1.16; 1.39] [17.2; 248.2] [0.92; 1.27] [1.25; 1.89] [9.78; 481.5]

IV-1 [0.92; 1.09] [0.90; 1.06] [33.2; 3317] [0.89; 1.15] [0.87; 1.14] [24.9; 3849]

IV-2 [0.98; 1.16] [0.97; 1.14] [38.6; 3809] [0.93; 1.22] [0.96; 1.29] [9.68; 457.7]

IV-3 [0.92; 1.09] [0.91; 1.09] [23.0; 1268] [0.95; 1.42] [1.03; 1.91] [10.1; 362.3]

a Analyses included a linear mixed effects model (LMM) analysis of normally distributed data and cumulative probit mixed effects
model (CPMM) analysis of ordinal data based on four response categories as mapped from the normally distributed data.
b First value indicates population (I–IV) and second value indicates replicate dataset (1–3) within each population. Residual variances
were specified to be heterogeneous within the first three populations (σ2

e f emale
= 1.00; σ2

emale
= 1.25) with large (αν = 3), moderate

(αν = 12) and small (αν = 50) levels of residual heteroskedasticity across random herd effects in Populations I, II, and III, respectively.
Residual homoskedasticity was specified for all three datasets in Population IV (σ2

e f emale
= σ2

emale
= 1; αν = ∞).
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Table II. Posterior inference on variance components allowing for residual heteroskedasticity based on a linear mixed model analysis
of birth weight and a cumulative probit mixed model analysis calving ease scores in Italian Piemontese cattle.

Linear mixed model analysis Cumulative probit mixed model analysis

Parametera PM ± SDb 95% PPIc ESSd PM ± SDb 95% PPIc ESSd

σ2
s 1.13 ± 0.20 [0.77; 1.54] 3379 0.13 ± 0.02 [0.09; 0.18] 2894

σ2
m 0.50 ± 0.11 [0.31; 0.74] 1836 0.02 ± 0.01 [0.01; 0.04] 841

σsm 0.35 ± 0.11 [0.15; 0.56] 2803 0.02 ± 0.01 [0.003; 0.05] 1169

σ2
h 1.68 ± 0.19 [1.33; 2.07] 14 094 0.13 ± 0.02 [0.10; 0.16] 7921

σ2
emale

14.44 ± 1.03 [12.63; 16.70] 7794 1.09 ± 0.09 [0.93; 1.29] 5915

σ2
e f emale

10.19 ± 0.73 [8.89; 11.77] 7713 0.71 ± 0.06 [0.61; 0.84] 5856

σ2
e f emale

− σ2
emale

4.26 ± 0.53 [3.29; 5.36] 21 839 0.38 ± 0.05 [0.28; 0.49] 14 045

σν 0.60 ± 0.09 [0.46; 082] 16 841 0.74 ± 0.14 [0.54; 1.07] 13 044

a See text for description.
b Posterior mean ± standard deviation.
c 95% equal-tailed posterior probability interval based on the 2.5th and 97.5th percentiles of the posterior density.
d Total effective number of independent samples across the three MCMC chains using Sorensen et al. [33].
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Figure 1. DIC differences between homoskedastic and heteroskedastic error models
for linear mixed model (LMM) analysis of normally distributed data and cumula-
tive probit mixed model (CPMM) analysis of ordinal data for 3 replicated datasets
from each of four different populations defined by high (αν = 3), moderate (αν =
12), low (αν = 50) or non-existing (αν = ∞) levels of random variability of residual
heteroskedasticity.

The simulation study was also used to validate DIC as model choice crite-
ria. For this purpose, DIC values based on homoskedastic and heteroskedastic
GLMM analyses for each replicated dataset within each of the four populations
were determined for the LMM analysis of L and for the CPMM analysis of y.
A DIC difference exceeding 7 has been suggested by Spiegelhalter et al. [38]
as indication of a decisive difference in model fit. The DIC differences be-
tween homoskedastic and heteroskedastic GLMM (LMM for y and CPMM
for L) as matched for each replicate dataset within populations are shown in
Figure 1. In all cases, DIC differences were clearly in favor the correct model
except when αν = ∞ where model choice was always indecisive except for
one CPMM case where the homoskedastic error model was correctly chosen.
Furthermore, as expected, the magnitude of DIC differences involving LMM
analyses of L was consistently higher than that for CPMM analyses of y as
there is likely greater statistical power for inference on continuous L as op-
posed to discrete y. Note that the DIC differences between homoskedastic and
heteroskedastic error GLMM approached 0 with increasing αν, such that there
was understandably lower power to conclude the existence of random sources
of residual heteroskedasticity when it was very mild.
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5.2. Application to calving ease scores in Italian Piemontese cattle

5.2.1. Genetic parameter inference

Sire and maternal grandsire LMM and CPMM were used for the analyses of
BW and CE, respectively, from Italian Piemontese cattle. Posterior means and
standard deviations and 95% PPI on dispersion parameters, i.e. variance com-
ponents and heteroskedastic parameters, are summarized in Table II, whereas
similar quantities are presented for genetic parameters, i.e., heritabilities and
their key differences and the direct-maternal genetic correlation, in Table III.
The effective sample size (ESS) as a measure of the number of effectively inde-
pendent samples amongst the 100 000 correlated MCMC samples saved from
each chain are also reported for each parameter using Sorensen et al. [35]. All
reported results in Tables II and III are based on combining information from
the three independent MCMC chains after burn-in. All posterior densities (not
shown) were nearly symmetric and unimodal which is further illustrated by
the near symmetricity of the 95% PPI about the reported posterior means in
Tables II and III.

The total number of ESS for dispersion parameters across the three chains
ranged from 1836 to 21 839 for the LMM analysis of BW and from 841 to
14 045 for the CPMM analysis of CE scores. As anticipated from the results
of the simulation study, the CPMM analysis of CE generated lower ESS than
the LMM analysis of BW. The additional inference on αν, σ2

emale
, and σ2

e f emale

relative to a homoskedastic GLMM specification did not appear to adversely
impact MCMC mixing on other dispersion parameters; for example, the re-
ported ESS for the heterogeneous CPMM in Tables II and III appeared to be
comparable to those for the homogeneous CPMM on the same data and for the
same number of MCMC cycles as reported in Kizilkaya et al. [20].

We observed that the posterior means of the residual variance using the ho-
moskedastic error models (results not reported) were nearly equal to the av-
erage of the posterior means for σ2

emale
and σ2

e f emale
in the heteroskedastic error

models for both GLMM reported in Table II. Note that for BW and CE, the
posterior mean of σ2

emale
was over 40% greater than that for σ2

e f emale
, and in ei-

ther case the 95% PPI on σ2
emale
− σ2

e f emale
did not include 0. These significant

differences further translated into sex-specific differences for direct and mater-
nal heritabilities estimated to be, respectively, 0.07 and 0.03 greater for BW in
females and 0.13 and 0.03 greater for CE in females; furthermore the 95% PPI
on each of these differences did not include 0 as also indicated in Table III. Het-
eroskedastic LMM and CPMM led to relatively large posterior means (≥0.60)
and 2.5th percentiles (≥0.46) for σν = 1√

αν−2
, thereby providing convincing
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Table III. Posterior inference on genetic parameters allowing for residual heteroskedasticity based on a linear mixed model analysis of
birth weight and a cumulative probit mixed model analysis of calving ease scores in Italian Piemontese cattle.

Linear mixed model analysis Cumulative probit mixed model analysis

Parametera PM± SDb 95% PPIc ESSd PM± SDb 95% PPIc ESSd

h2
d_male

0.25±0.04 [0.17; 0.33] 3392 0.37±0.06 [0.26; 0.50] 2687

h2
m_male

0.09±0.03 [0.05; 0.15] 1617 0.09±0.03 [0.04; 0.17] 943

h2
d_ f emale

0.32±0.05 [0.22; 0.43] 3315 0.50±0.08 [0.35; 0.68] 2488

h2
m_ f emale

0.12±0.04 [0.07; 0.20] 1610 0.13±0.05 [0.05; 0.23] 935

rdm –0.30±0.15 [–0.57; 0.02] 2328 –0.63±0.15 [–0.89; –0.21] 975

h2
d_ f emale

− h2
d_male

0.07 ±0.01 [0.05; 0.10] 4354 0.13±0.03 [0.09; 0.19] 3093

h2
m_ f emale

− h2
m_male

0.03 ±0.01 [0.02; 0.05] 1819 0.03±0.01 [0.01; 0.06] 1025

a See text for description.
b Posterior mean ± standard deviation.
c 95% equal-tailed posterior probability interval based on the 2.5th and 97.5th percentiles of the posterior density.
d Total effective number of independent samples across the three MCMC chains using Sorensen et al. [33].
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evidence that the degree of residual heteroskedasticity across herds is great for
both BW and CE.

Approximate 95% PPI (based on the posterior mean ±2 posterior standard
deviations) for herd-specific ν j in the LMM and CPMM analyses of BW and
CE, respectively, are presented in Figure 2. For both traits, it can be seen that
the approximate 95% PPI for ν j in many herds do not overlap with the prior
expected value of 1, indicating that residual variances for these herds are sig-
nificantly higher or lower than average, as would be anticipated from the in-
ference on σν in Table II. It should be noted that the ranges of posterior means
of ν j were greater than 10 fold for the LMM analysis of BW in Figure 2a and
greater than 20 fold for the CPMM analysis of CE in Figure 2b; i.e. residual
variances in some herds are estimated to be as large as 20 times greater than
residual variances in other herds.

For each homoskedastic and heteroskedastic GLMM, DIC values were av-
eraged across the three independent MCMC chains. Differences in DIC values
within models never ranged by more than 3 units across these three chains,
thereby indicating satisfactory control of Monte Carlo error. For the LMM
analysis of BW, the average DIC value for the heteroskedastic error model
was 44 332 compared to 45 240 for the homoskedastic error model, thereby
clearly establishing the heteroskedastic error LMM as the better fitting model.
Similarly, for CE, the average DIC value for the heteroskedastic CPMM was
15 949 compared to 16 563 for the homoskedastic CPMM, again favoring the
heteroskedastic error model. Kizilkaya et al. [20] analyzed the same CE data,
comparing the homoskedastic error CTMM to the homoskedastic error CPMM
and determined that the average DIC value (16 348) for the homoskedastic
CTMM made that the model of choice. Using the results from Kizilkaya
et al. [20] and the results reported here, the heteroskedastic error CPMM
appears to be clearly superior to both the homoskedastic error CTMM and
CPMM models for fit to CE in Italian Piemontese cattle.

5.2.2. Inferences on sire effects

Posterior means of elements of s were used as corresponding point esti-
mates of expected progeny differences (EPD) under both homoskedastic and
heteroskedastic error GLMM. Scatterplots of the heteroskedastic error EPD
versus homoskedastic error EPD for the LMM analysis of BW and for the
CPMM analysis of CE are provided in Figure 3. Although the degree of over-
all reranking was not great between the two error specifications (rank corre-
lations > 0.96 for both GLMM), the same was not necessarily true for the
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Figure 2. Posterior means (•) and approximate 95% posterior probability interval
(bar endpoints) on herd-specific relative variances based on (a) heteroskedastic lin-
ear mixed model analysis of birth weights and (b) heteroskedastic cumulative probit
mixed model analysis of calving ease scores for each of 66 Italian Piemontese herds
labeled by posterior mean rankings within each of the two analyses. Horizontal refer-
ence line of a unitary relative variance superimposed.

bottom and top 10% of sires as ranked by the appropriate heteroskedastic error
GLMM. For the bottom 10%, rank correlations were less than 0.86 for both
GLMM whereas the same correlations were less than 0.80 for the top 10%.
EPD differences between the heteroskedastic and homoskedastic error GLMM
ranged from –0.74 kg to 0.96 kg for BW and from –0.20 to 0.22 (on the la-
tent scale) for CE; these ranges are not trivial relative to σs as based on the
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Figure 3. Expected progeny differences (EPD) for heteroskedastic error versus ho-
moskedastic error models based on (a) linear mixed model analysis of birthweights
and (b) cumulative probit mixed model analysis of calving ease scores in Italian
Piemontese cattle for bottom 10% (◦), middle 80% (•) and top 10% (�) by het-
eroskedastic error EPD rankings within each of the two analyses. Reference line of
unitary slope and zero intercept superimposed.

square root of the corresponding posterior means of σ2
s in Table III. It is in-

teresting to note, in particular, the large EPD discrepancy for BW between the
heteroskedastic and homoskedastic error LMM for the left-most point in Fig-
ure 3a. This sire had all of his progeny in year-seasons deriving from one herd;
incidentally, this herd corresponds to the right-most 95% PPI provided in Fig-
ure 2a and having the largest posterior mean for relative residual variance (ν j).
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6. DISCUSSION

Accounting for heterogeneous residual variances in genetic evaluations has
represented an important area of research in animal breeding (e.g. [7,9,11,17,
18,26,29,31,32]). We have developed a general framework for structural mod-
eling of heterogeneous residual variances in GLMM based on fully Bayesian
inference using MCMC methods. Our method can be readily extended to al-
low for heterogeneous residual variances across subclasses for other GLMM
analyses, particularly those that involve normally distributed latent variables,
including censored data models [36].

We validated two different heteroskedastic error GLMM by simulation,
demonstrating that fully Bayesian inference allows satisfactory inference on
the parameters that specify residual heteroskedasticity. Our simulation study
further indicated that Bayesian model choice criteria such as DIC can be used
with confidence to choose between heteroskedastic and homoskedastic GLMM
error models.

Residual variances for BW and CE were estimated to be over 40% greater
in male calves compared to female calves in Italian Piemontese cattle, con-
tributing therefore to smaller heritabilities of direct and maternal effects for
male calves. These results for BW are in relatively good agreement with those
from Garrick et al. [11]. Our results for CE are in agreement with analyses
on Blonde d’Aquitaine cattle [8] but are substantially more deviant than those
results reported by Ducrocq [7] who estimated residual variances to be 7–18%
greater in male calves in French Holstein, Normande and Montbéliarde popu-
lations and those results reported by Canavesi et al. [3] who estimated resid-
ual variances to be less than 3% greater for male calves in Italian Holsteins.
Because of the large estimated differences in residual variances, direct and
maternal heritabilities were then determined to be substantially larger for fe-
male calves than for male calves for both BW and CE. However, our results
and particularly its CE comparisons with Ducrocq [7] and Canavesi et al. [3]
should be treated with caution. Firstly, our population involves a double mus-
cled breed with a high frequency of unfavorable CE scores relative to the cattle
populations considered in Ducrocq [7] and Canavesi et al. [3]. This distinction
appears to be further apparent in that our reported direct heritability estimates
for either calf sex were substantially larger than corresponding estimates from
recent studies using CPMM [3,7,22,24,25,27,28,42]. Nevertheless, our infer-
ence on a strongly negative direct-maternal genetic correlation for both BW
and CE is in good agreement with previous work (e.g. [2, 42]). Secondly,
Ducrocq [7] and Canavesi et al. [3] also modeled constant genetic/residual
variance ratios, following the work of Foulley and Gianola [10], whereas we
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model constant genetic variances across environments; a more formal com-
parison using, e.g. DIC, of these two specifications is worthy of further study.
To our knowledge, nobody has yet inferred upon sex-specific genetic variance
for CE. This is an area for further research and requiring a substantially larger
dataset than what we considered as the power for inferring upon sex-specific
genetic variance is likely to be substantially lower than that for sex-specific
residual variance using the CPMM. Finally, Ducrocq [7] and Canavesi et al. [3]
used approximate marginal maximum likelihood (MML) inference which has
been demonstrated to lead to biased estimates of dispersion parameters in sim-
ulation studies [15] although our recent work does not suggest meaningful
differences between MML and MCMC inference using a CPMM for CE based
on larger datasets [19].

There appeared to be no appreciable differences in overall sire rankings
based on EPD rank correlations between homoskedastic and heteroskedastic
error GLMM for either BW or CE; however, this was not necessarily the case
for sires with more extreme EPD for direct genetic effects, specifically the top
and bottom 10%. These results are significant in that breeder selection strate-
gies for both traits invariably involve either direct selection of sires in one of
these tails and/or avoidance of sires in the other tail, particularly for first par-
ity dams. Furthermore, absolute differences in EPD between the two GLMM
for each trait were large relative to the genetic variability. Even greater differ-
ences in EPD rankings and absolute differences might be anticipated for ge-
netic evaluations of dams using animal model GLMM since they are used less
extensively across potentially heteroskedastic subclasses, e.g. herds, compared
to sires.

Kizilkaya et al. [20] used homoskedastic error CTMM whereas Ducrocq [7],
Foulley [8], and Canavesi et al. [3] used heteroskedastic error CPMM, all as in-
dependent efforts to provide stable genetic evaluations of sires for subjectively
recorded CE. Elements of both sets of models, however, may be required. That
is, CE data quality may be compromised if, for example, some breeders as-
sign CE scores on a much wider ordinal scale than others, thereby requiring
a heteroskedastic error model, or decisions on CE assistance, e.g. Caesarean
sections, are more likely for highly valued dams, thereby requiring a robust
specification like the CTMM. It is conceptually easy to jointly extend the work
presented here for heteroskedastic error GLMM and for t-error GLMM as in
Kizilkaya et al. [20] to develop heteroskedastic t-error LMM for BW or het-
eroskedastic error CTMM for CE. We have already pursued this work with DIC
values clearly pointing to improved model fit based on these enhanced spec-
ifications for both BW and CE; this work will be reported in a future study.
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The existence of potentially sizable residual and genetic correlations between
BW and CE also facilitate more accurate genetic evaluations of sires for CE
based on a bivariate threshold/linear multiple trait analysis with BW [23, 42].
We believe the model that we have presented will be useful in facilitating a
mixed effects extension to bivariate heteroskedastic error modeling for both
BW and CE jointly using, say, inverted Wishart rather than inverted gamma
structural prior specifications.
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